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Note

On the Zeroes of a Polynomial
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Let P(z) = L]:J aJzj + z" (n): 2) be a polynomial with complex coefficients.
where not all of the numbers aQ' ...• an _2 are equal to O. We prove that if P(z)=O,

then

Iz+ !an_.1 ~ ~ lan_II + (~2 lan-jl (XJ-2) 1/2.

with ct = I/max 2 ~ j:S:; n Ian _ j I' ,Ii. lS-"1 1995 Academic Press. Inc.

In this note we designate by P the polynomial P(z)=Lj~ci aizi+zn

(n ~ 2), where ao, ..., an -I and = are complex numbers. Moreover, we
assume that a o, ... , a n -2 are not all equal to O. The following proposition
concerning the location of the zeroes of P was proved by Walsh [4] in
1924.

THEOREM A. If P( z) = 0, then

I + 1 1:<: I I 1+" lan_l,ll/i.= 2an- I "" 2 an - 1 L..-
j=2

(1)

New proofs of Theorem A were given by Rudnicki [3] and Bell [1]. In
1970 Rahman [2] presented an interesting refinement of inequality (1).

THEOREM B. If P( =) = 0, then

1= + !a n _ II ~ ~ Ian - II + eM,

with M = "l~--2 la ,I Iii and c = max . (M- 1 la ·11li)<i-1)li£.... n-J 2~J~n, "-j .

(2)
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Since 0 < (' ~ I it follows that (2) sharpens inequality (I ). In this note we
prove a counterpart of Rahman's result which provides a new refinement
of (l ).

THEOREM. If P(=) = 0, then

(3)

Proof Let K=CL~~2 la,,_)1 (Xj-2)1/2. We assume (for a contradiction)
that =does not satisfy inequality (3). Then we obtain

which implies

1=1> K.

Let

(4)

(5)

b -I I j- 2K- J
j- a,,_) ex

Since

(2~j~n).

we get for j= 2, ..., n:

b K j - L - I I ( K)j - 2 >- I I) - a" _) IX ::-- a" _ j .

From (5) and (6) we obtain for j=2, ..., n:

and

Summing leads to

" "I la"_jll=I"-)~ I hj 1=1"-1 =KI=I"-l.
j=2 j~2

(6)

(7)
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From (4) and (7) we get

/I
:;,,11a II~I/I-l+" la ·11-1/1-;r2 /1-J - ~ n-.I'"

;=2

:;"\1a _/l-I+~.' a .-/1-;\
=:;.....- 2 n-I.... ~ 11-)- •

;~2

Hence, we obtain

IP( ~) I :;" \-/1 + 1a ~/I - II -1 1a ~/I- I + ~ a . _/1-;I> 0.... r - 211-1.... 2 n-l- ~ 1I-J- ,

j=2

which contradicts the assumption that =: is a zero of P. I

Remark. Since

423

with la/l_;loc;-I~la/l_;llij (2~j~n) and (L7~2Ia/l_;locj)-1/2~1, we
conclude that (3) refines inequality (1). It is natural to ask whether the two
bounds given in (2) and (3) can also be compared. The answer is "no." For
instance, let

P( =: ) = =/1 + 0 I =+ 00

with la 11 1
/(11- I) = laol Jill> 0 and n ~ 3. Simple calculations reveal that the

bound given by (2) is better than the one given by (3). However, if
oc= 1011 _ 21- 1

/
2

, then (3) provides a better bound than (2). We prove this
assertion:

I 1 ;-2-1 II I-U - 2l/2 ,,:::1 I'UI 11/ 2an _ j C(" - an _ j a
ll

-2 -....;:: an _ j an - 2 .

And, from the Cauchy-Schwarz inequality and (8) we obtain

(8)

II

I lall_;loc;
;=2

~ L 10
11

_;1 OC;-2

)=2
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II

:;;;; L: lall_JII/Jlan_ZIIIZ
J~z

:;;;;Z~:~n [Jtz

= (eMf,

]

Zlk

la ·II/J la .1(k-1llk
n - J n-J,;,

with e and M as defined in Theorem B.
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